

Project 6

Name/title of the PhD course	Chemical Sciences
	Parf. Anadias Lauchardi
Name of the PhD	Prof. Angelina Lombardi
coordinator	
Name/Title of	Gut microbiota-metabolized agri-food wastes: new perspectives for the recovery of bioactive compounds and
the PhD project	development of novel prebiotics
Department of reference	Department of Chemical Sciences of University of Naples Federico II (http://www.scienzechimiche.unina.it/)
Working	The Department hosts about 100 researchers/professors and 20 units of technicians and administrative personnel. The
-	
conditions,	department hosts several large instrumentations used in different research areas by researchers and students of degree
research team,	and PhD courses, including several 400-600 MHz NMR spectrometers, a LC-MS ESI-TOF and a MALDI TOF-TOF
infrastructures,	spectrometer, several small/wide angle X-rays diffraction instruments, UV/VIS spectrophotometers, a
equipment	spectropolarimeter, FT-IR and ATR-FTIR instruments, a spectrofluorimeter, an EPR spectrometer, a DLS instrument, and SEM and TEM instruments. The research activities carried out in the department cover several areas of chemistry, and
	in particular the working groups where the recruited PhD will work with are involved in research projects on 1) structure
	and property characterization of natural and bioinspired polyphenols for health and food applications, surface
	functionalization with catechol compounds, melanin pigments as innovative functional materials for dermocosmetic
	and technological applications, and 2) carbohydrate chemistry and biochemistry, structural and chemical biology of
	microbial glycans and glycoconjugates aimed at assessing their structure, conformation, function and immune
	recognition, study of molecular recognition events in glycans-protein interaction by spectroscopic, biophysical, computational techniques, and characterization of 3D complexes. These working groups are overall composed of 4 full
	professors, 6 associate professors, 1 post-docs, 1 RTD-A and 9 PhD students.
Scientific	Largely produced waste materials and by-products from the agri-food industry represent a sustainable and easily
context	available source of bioactive compounds such as polysaccharides and phenolic compounds The prebiotic activity of
context	some of these materials, such as spent coffee grounds, grape pomace, hazelnut shell, mango, apple, lemon and banana
	peels, and soybean by-products has been also recently reported, paving the way toward the recovery of agri-food
	wastes as food supplements. On the other hand, biotechnological approaches aimed at the recovery of bioactives from
	agri-food by-products are actively pursued and represent an environmentally clean technology for the production of
	high activity compounds and extracts for application e.g. as food additives or cosmetic ingredients. As a remarkable
	example, solid state fermentation of pomegranate peels and husks could afford the recovery in very high yields of ellagic
	acid, a phenolic compound which is endowed with anti-mutagenic and anti-carcinogenic activity and is able to prevent
	the onset of cardiovascular diseases, atherosclerosis, and dyslipidemic disorders as well as to stimulate wound healing
	and skin elasticity. Solid state fermentation has also been found to effectively enhance the bioaccessible and
	bioavailable phenolic contents in cereal by-products, whereas enzymatic biotransformation has been reported to
	increase the antioxidant activity of polyphenols form grape pomace. Solid state fermentation by Aspergillus niger of
	mixtures of wastes from wineries, olive mill and breweries to produce antioxidant compound has been also reported.
	Polysaccharides from agri-food by-products are also extensively modified by microbial fermentation; for example,
	sustainable and clean processes for the production of xylooligosaccharides from lignocellulosic biomasses based on
	enzymatic hydrolysis or microbial fermentations have been recently reviewed. Production of a wide variety of functional
	carbohydrates through fermentation of vegetable food waste and by-products by Aspergillus, Yarrowia, Trichoderma,
	Amycolatopsis, and Xanthomonas species has been reported as well. The immune-enhancing effects of polysaccharide
	extracted from by-products of Korean liquor fermented by Saccharomyces cerevisiae have been very recently reported.
	Therefore, bacterial modification of polysaccharides from agri-food by-products represents an important research field
	in biotechnology. The potential production/conversion to value-added products has increasing applications in
	pharmacological, nutraceutical, functional food, cosmeceutical, and agricultural fields, and future prospects for the
	development of immunomodulators, anti-inflammatories and bioflocculants.
Project Research	The general objective of the project is a systematic investigation of the structural modifications induced by gut
plan	microbiota on the main polysaccharidic and phenolic components of a series of agri-food wastes. These latter will be
	selected among those easily available in high amounts and well-characterized in terms of the chemical structure of the
	main polysaccharidic and phenolic components, in order to define the metabolic transformation pathways. Based on
	the information collected, ad hoc fermentation conditions will be developed for the recovery of bioactive compounds
	for food and cosmetic applications. The project will be divided into 5 main work packages (WPs):
	WP1: Characterization of the structural modifications induced on the phenolic and sugar components of the agri-food
	wastes by an in vitro simulated gastrointestinal digestion followed by gut microbiota fermentation.
	WP2: Determination of the prebiotic activity of the agri-food wastes.
	WP3: Determination of the antioxidant properties of the agri-food by-products before and after simulated
	gastrointestinal digestion and gut microbiota fermentation. WP4:Optimization of the fermentation conditions on the more promising agri-food wastes to improve the recovery yields
	of the bioactive compounds and implementation of green and sustainable methodologies for their extraction (in collaboration with University of Conduila Maxico)
	collaboration with University of Coahuila, Mexico).

	WP5: Preliminary evaluation of the obtained bioactives as functional ingredients in the food and cosmetic sector (in collaboration with Boiaschorf AC, Cormanu)
Research and	collaboration with Beiersdorf AG, Germany). Although it is well-known that waste products of the agricultural and food industry can be metabolized by the gut
	microbiota, thus resulting in the production of bioactive compounds as well as in prebiotic effects, a systematic
Training Innovative	investigation of the modifications induced on structure and properties of the main bioactive constituents is still lacking
aspects	in the literature. The understanding of the chemical and metabolic processes underlying the gut microbiota-induced
aspects	transformation of agri-food by-products will allow not only to further exploit the potential of these easily available
	materials as prebiotics, to be eventually used as food supplements, but also to open new technological perspectives for
	the recovery of compounds to be used as functional additives in a wide range of materials by a more efficient control
	and modulation of the bioprocessing conditions. The social and economic impact of the project is also well-apparent
	considering that it is aimed to strengthen the importance of agri-food by-products as an easily accessible and
	sustainable alternative for the production of value-added functional compounds, therefore ultimately leading to a
	reduction of the disposal costs and of the environmental hazard as well as to an enhancement of the sustainability of
	the agri-food industrial sector, also in a circular economy perspective. In addition, fermentation and related
	biotransformation for production of bioactive compounds represent environmentally clean technologies, providing high
	quality and high activity extracts for application as biocompatible food additives or cosmetic ingredients.
Inter-	The present project will allow the PhD student to acquire expertise in several disciplines of chemistry such as organic
Multidisciplinary	chemistry (methodologies and biophysical/spectroscopic and spectrometric approaches for the structure and property
aspects	characterization of heterogeneous and complex compounds of natural origin), analytical chemistry (development of
	extraction and analytical methods for identification and quantitation of natural compounds in complex mixtures), green
	chemistry (development of green and sustainable methodologies for the recovery of functional compounds), and
	fermentation chemistry (characterization of the main metabolic transformations induced by the gut microbiota and
	optimization of bioprocessing conditions for the recovery of functional compounds). The collaboration with food
	chemists, biologists and microbiologists will further reinforce the intersectoral and multidisciplinary aspects of the
	project. Finally, the collaboration with a industrial partner will further contribute to the professional growth of the PhD
	student by providing the opportunity to transfer the basic knowledge acquired from the studies conducted on a
Casandurant	laboratory scale at the university to the practical implementation of a functional additive on an industrial scale.
Secondment	The Universidad Autonoma de Coahuila (Mexico, http://www.uadec.mx), a public higher education with research
opportunities	activity of the Bioprocesses & Bioproducts Research Group of the Food Research Department is focused on engineering of bio-products from renewable bioresources. The co-supervisor of this research project, Dr. Juan A. Ascacio-Valdes ,
	He will contribute to this project by hosting the PhD student for a secondment of <u>two/three months</u> during which he/she
	will come in contact with his research and production activities oriented to define the fermentation conditions on the
	more promising agri-food wastes in order to improve the recovery yields of the bioactive compounds and to implement
	green and sustainable methodologies for their extraction.
	Beiersdorf AG, Hamburg, Germany (https://www.beiersdorf.com/), a German multinational company that
	manufactures and retails skin-care products. The co-supervisor of this research project, Dr. Jörn Hendrik Reuter, the
	Head of the Microbiome Research Team of Beiersdorf AG with expertise on research in all aspects of the microbiome
	with regards to skin and consumer products, with particular reference to atopic dermatitis and acne. He will contribute
	to the project by hosting the PhD student for a secondment of six months during which he/she will come in contact
	with Beiersdorf research and/or training activities, which will further contribute to the development of knowledge and
	skills of the doctoral researcher. In particular he/she will be hosted in the Global Skin Research Center in Hamburg with
	laboratories for skin research and disease as well as microbiology research, where he will acquire expertise on cosmetic
	formulations, by testing the more promising agri-food by-products derived extracts and products in the dermo cosmetic
Main Commission	sector (e.g. as photoprotectors or anti-aging agents).
	: Prof. Lucia Panzella (<u>https://www.docenti.unina.it/lucia.panzella</u>); Co-supervisor : Prof. Alba Silipo
Brief CV	centi.unina.it/alba.silipo) Lucia Panzella is Associate Professor of Organic Chemistry at the Department of Chemical Sciences of University of
BHEICV	Naples "Federico II". In 2007 she received the prize "L'Oreal Italia Per le Donne e la Scienza" promoted by L'Oréal Italia
	in collaboration with the Italian National Commission for Unesco (2007). In November 2020 she received the National
	Scientific Qualification ("Abilitazione Scientifica Nazionale") as Full Professor in Organic Chemistry (03/C1) (2018/2020
	session). Her teaching activities at University of Naples Federico II include "Organic Chemistry in Food Science" course
	for the Bachelor's degree in Chemistry, "Organic Chemistry and Laboratory" course for the Bachelor's degree in Biology,
	and "Natural phenolic compounds: structure, reactivity and applications" PhD course for the PhD course in Chemical
	Sciences. She has been/is supervisor of 2 PhD students in Chemical Sciences and 7 students in Biological Sciences, and
	co-supervisor of more than 50 students in Chemistry, Chemical Sciences, and Biology. Her research interests focus on
	the reactivity and functional properties of phenolic compounds, with particular reference to those deriving from agri-
	food by-products, for the development of functional materials to be used in cosmetics, food packaging and biomedicine;
	reactivity of dietary polyphenols with reactive oxygen and nitrogen species and their coupling reactions with sulfhydryl
	compounds of biological relevance; chemistry of melanin pigments. She is member of the Board of Directors and of the
	Travel Award Committee of the European Society for Pigment Cell Research since 2017. She is member of the Italian
	Chemical Society (Division of Organic Chemistry, Biotechnology Interdivisional Group, Green Chemistry Interdivisional
	Group) and of Groupe Polyphenols. She was member of the scientific and organizing committee of the '1st Virtual
	Group, and or Groupe Polyphenois. She was member of the scientific and organizing committee of the "1st Virtual

	Symposium for Young Organic Chemists' (ViSYOChem) promoted by the Organic Division of Italian Chemical Society.Experience in supervising PhD students:Currently supervising 2 PhD students in Chemical Sciences.Alba Silipo, co-supervisor, is Full Professor of Organic Chemistry at the Department of Chemical Sciences of University of Naples Federico II. She is author/coauthor of 165 publications on international peer-reviewed journals (h-index 33, number of citations 3800 (Scopus, January 2022).
Publications	 She is author/coauthor of 127 publications on international peer-reviewed journals (h-index: 36, number of citations: 3095, from Scopus on January 12, 2022). Most significant 5 publications: -Rajha, H. N.; Paule, A.; Aragonès, G.; Barbosa, M.; Caddeo, C.; Debs, E.; Dinkova, R.; Eckert, G. P.; Fontana, A.; Gebrayel, P.; Maroun, R.G.; Napolitano, A.; Panzella, L.; Pasinetti, G. M.; Stevens, J. F.; Schieber, A.; Edeas, M. Recent advances in research on polyphenols: effects on microbiota, metabolism, and health. Mol. Nutr. Food Res., 2022, 66, 2100670. -Ortenzi, M.A.; Antenucci, S.; Marzorati, S.; Panzella, L.; Molino, S.; Rufián-Henares, J.Á.; Napolitano, A.; Verotta, L. Pectin-based formulations for controlled release of an ellagic acid salt with high solubility profile in physiological media. Molecules, 2021, 26, 433 -Moccia, F.; Flores-Gallegos, A. C.; Chávez-González, M. L.; Sepúlveda, L.; Marzorati, S.; Verotta, L.; Panzella, L.;, Ascacio-Valdes, J.A.; Aguilar, C.N.; Napolitano A. Ellagic acid recovery by solid state fermentation of pomegranate wastes by Aspergillus niger and Saccharomyces cerevisiae: a comparison. Molecules, 2019, 24, 3689 -Verotta, L.; Panzella, L.; Antenucci, S.; Calvenzani, V.; Tomay, F.; Petroni, K.; Caneva, E.; Napolitano, A. Fermented pomegranate wastes as sustainable source of ellagic acid: antioxidant properties, anti-inflammatory action, and controlled release under simulated digestion conditions. Food Chem., 2018, 246, 129-136 -Panzella, L.,* Pérez-Burillo, S., Pastoriza, S., Martín, M. A., Cerruti, P., Goya, L., Ramos, S., Rufián-Henares, J. A., Napolitano, A., d'Ischia, M. (2017) High antioxidant action and prebiotic activity of hydrolyzed spent coffee grounds (HSCG) in a simulated digestion-fermentation model: toward the development of a novel food supplement. J. Agric. Food Chem., 65, 6452-6459
Projects participation	 Main Funding: H2020-MSCA-ITN-2020, "A multidisciplinary training network for the bioinspired development of glycomimetics tuning the Siglec-Sialoglycan axis", Proposal number 956758 (GLYTUNES, www.glytunes.eu), Coordinator PRIN 2017, "Bioinspired development of glycomimetics tuning the Siglec-Sialylated glycan axis." (2017XZ2ZBK), Coordinator COST Action (CA18103) INNOGLY, 2019-2023, Role: MC Substitute European Union (FSE, PON Ricerca e Innovazione 2014-2020, Azione I.1 "Dottorati Innovativi con caratterizzazione Industriale"), Coordinator; partner Giotto Biotech (Prof. M. Fragai) and Prof. S. Martin Santamaria (CSIC, Madrid), (XXXIII cycle). European Union (FSE, PON Ricerca e Innovazione 2014-2020, Azione I.1 "Dottorati Innovativi con caratterizzazione Industriale"), Coordinator; partner GSK (Dott. F. Berti) and Prof. S. Martin Santamaria (CSIC, Madrid), (XXXVII cycle). H2020-MSCA-ITN-2014, "Toll-Like Receptor 4 activation and function in diseases: an integrated chemical-biology approach", Proposal number: 642157 (TOLLerant), Beneficiary partner (as PI) H2020-MSCA-ITN-2019"SweetCrossTalk", Beneficiary partner (team member, tutor of a PhD student)